\begin{tabbing} (\%S\% \\[0ex]$\backslash$p. \=let i = var\_of\_hyp (get\_int\_arg `hn` p) p in \+ \\[0ex] \\[0ex]let z = get\_distinct\_var `zz' p in \\[0ex]Assert \\[0ex](mk\_\=all\_term z $\mathbb{N}$ \+ \\[0ex]( \-\-\\[0ex]mk\_all\_term\= i $\mathbb{N}$ \+ \\[0ex](mk\=\_implies\_term \+ \\[0ex](mk\_less\_than\_term (mvt i) ( \-\-\\[0ex]mvt \=z)) \=\+\+ \\[0ex](concl p)))) \-\\[0ex]p) \- \end{tabbing}